Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 7(1): 60, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980424

RESUMO

Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.

2.
Sci Rep ; 13(1): 12603, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537204

RESUMO

The agricultural productivity of smallholder farmers in sub-Saharan Africa (SSA) is severely constrained by pests and pathogens, impacting economic stability and food security. An epidemic of cassava brown streak disease, causing significant yield loss, is spreading rapidly from Uganda into surrounding countries. Based on sparse surveillance data, the epidemic front is reported to be as far west as central DRC, the world's highest per capita consumer, and as far south as Zambia. Future spread threatens production in West Africa including Nigeria, the world's largest producer of cassava. Using innovative methods we develop, parameterise and validate a landscape-scale, stochastic epidemic model capturing the spread of the disease throughout Uganda. The model incorporates real-world management interventions and can be readily extended to make predictions for all 32 major cassava producing countries of SSA, with relevant data, and lays the foundations for a tool capable of informing policy decisions at a national and regional scale.


Assuntos
Manihot , Doenças das Plantas , África Subsaariana/epidemiologia , África Ocidental , Uganda
3.
Proc Math Phys Eng Sci ; 476(2238): 20200376, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32821237

RESUMO

COVID-19 is characterized by an infectious pre-symptomatic period, when newly infected individuals can unwittingly infect others. We are interested in what benefits facemasks could offer as a non-pharmaceutical intervention, especially in the settings where high-technology interventions, such as contact tracing using mobile apps or rapid case detection via molecular tests, are not sustainable. Here, we report the results of two mathematical models and show that facemask use by the public could make a major contribution to reducing the impact of the COVID-19 pandemic. Our intention is to provide a simple modelling framework to examine the dynamics of COVID-19 epidemics when facemasks are worn by the public, with or without imposed 'lock-down' periods. Our results are illustrated for a number of plausible values for parameter ranges describing epidemiological processes and mechanistic properties of facemasks, in the absence of current measurements for these values. We show that, when facemasks are used by the public all the time (not just from when symptoms first appear), the effective reproduction number, Re , can be decreased below 1, leading to the mitigation of epidemic spread. Under certain conditions, when lock-down periods are implemented in combination with 100% facemask use, there is vastly less disease spread, secondary and tertiary waves are flattened and the epidemic is brought under control. The effect occurs even when it is assumed that facemasks are only 50% effective at capturing exhaled virus inoculum with an equal or lower efficiency on inhalation. Facemask use by the public has been suggested to be ineffective because wearers may touch their faces more often, thus increasing the probability of contracting COVID-19. For completeness, our models show that facemask adoption provides population-level benefits, even in circumstances where wearers are placed at increased risk. At the time of writing, facemask use by the public has not been recommended in many countries, but a recommendation for wearing face-coverings has just been announced for Scotland. Even if facemask use began after the start of the first lock-down period, our results show that benefits could still accrue by reducing the risk of the occurrence of further COVID-19 waves. We examine the effects of different rates of facemask adoption without lock-down periods and show that, even at lower levels of adoption, benefits accrue to the facemask wearers. These analyses may explain why some countries, where adoption of facemask use by the public is around 100%, have experienced significantly lower rates of COVID-19 spread and associated deaths. We conclude that facemask use by the public, when used in combination with physical distancing or periods of lock-down, may provide an acceptable way of managing the COVID-19 pandemic and re-opening economic activity. These results are relevant to the developed as well as the developing world, where large numbers of people are resource poor, but fabrication of home-made, effective facemasks is possible. A key message from our analyses to aid the widespread adoption of facemasks would be: 'my mask protects you, your mask protects me'.

4.
PLoS Comput Biol ; 16(7): e1007823, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614829

RESUMO

Cassava brown streak disease (CBSD) is a rapidly spreading viral disease that affects a major food security crop in sub-Saharan Africa. Currently, there are several proposed management interventions to minimize loss in infected fields. Field-scale data comparing the effectiveness of these interventions individually and in combination are limited and expensive to collect. Using a stochastic epidemiological model for the spread and management of CBSD in individual fields, we simulate the effectiveness of a range of management interventions. Specifically we compare the removal of diseased plants by roguing, preferential selection of planting material, deployment of virus-free 'clean seed' and pesticide on crop yield and disease status of individual fields with varying levels of whitefly density crops under low and high disease pressure. We examine management interventions for sustainable production of planting material in clean seed systems and how to improve survey protocols to identify the presence of CBSD in a field or quantify the within-field prevalence of CBSD. We also propose guidelines for practical, actionable recommendations for the deployment of management strategies in regions of sub-Saharan Africa under different disease and whitefly pressure.


Assuntos
Simulação por Computador , Monitoramento Ambiental/métodos , Manihot , Doenças das Plantas , África Subsaariana , Animais , Resistência à Doença , Abastecimento de Alimentos , Hemípteros , Modelos Estatísticos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos
5.
Sci Data ; 6(1): 327, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852893

RESUMO

Cassava brown streak disease (CBSD) is currently the most devastating cassava disease in eastern, central and southern Africa affecting a staple crop for over 700 million people on the continent. A major outbreak of CBSD in 2004 near Kampala rapidly spread across Uganda. In the following years, similar CBSD outbreaks were noted in countries across eastern and central Africa, and now the disease poses a threat to West Africa including Nigeria - the biggest cassava producer in the world. A comprehensive dataset with 7,627 locations, annually and consistently sampled between 2004 and 2017 was collated from historic paper and electronic records stored in Uganda. The survey comprises multiple variables including data for incidence and symptom severity of CBSD and abundance of the whitefly vector (Bemisia tabaci). This dataset provides a unique basis to characterize the epidemiology and dynamics of CBSD spread in order to inform disease surveillance and management. We also describe methods used to integrate and verify extensive field records for surveys typical of emerging epidemics in subsistence crops.


Assuntos
Manihot/microbiologia , Doenças das Plantas/microbiologia , Animais , Monitoramento Ambiental , Hemípteros , Insetos Vetores , Uganda
6.
Environ Res Lett ; 14(11): 115004, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33343688

RESUMO

Wheat rust diseases pose one of the greatest threats to global food security, including subsistence farmers in Ethiopia. The fungal spores transmitting wheat rust are dispersed by wind and can remain infectious after dispersal over long distances. The emergence of new strains of wheat rust has exacerbated the risks of severe crop loss. We describe the construction and deployment of a near realtime early warning system (EWS) for two major wind-dispersed diseases of wheat crops in Ethiopia that combines existing environmental research infrastructures, newly developed tools and scientific expertise across multiple organisations in Ethiopia and the UK. The EWS encompasses a sophisticated framework that integrates field and mobile phone surveillance data, spore dispersal and disease environmental suitability forecasting, as well as communication to policy-makers, advisors and smallholder farmers. The system involves daily automated data flow between two continents during the wheat season in Ethiopia. The framework utilises expertise and environmental research infrastructures from within the cross-disciplinary spectrum of biology, agronomy, meteorology, computer science and telecommunications. The EWS successfully provided timely information to assist policy makers formulate decisions about allocation of limited stock of fungicide during the 2017 and 2018 wheat seasons. Wheat rust alerts and advisories were sent by short message service and reports to 10 000 development agents and approximately 275 000 smallholder farmers in Ethiopia who rely on wheat for subsistence and livelihood security. The framework represents one of the first advanced crop disease EWSs implemented in a developing country. It provides policy-makers, extension agents and farmers with timely, actionable information on priority diseases affecting a staple food crop. The framework together with the underpinning technologies are transferable to forecast wheat rusts in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops.

7.
New Phytol ; 214(3): 1317-1329, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28370154

RESUMO

Effective control of plant disease remains a key challenge. Eradication attempts often involve removal of host plants within a certain radius of detection, targeting asymptomatic infection. Here we develop and test potentially more effective, epidemiologically motivated, control strategies, using a mathematical model previously fitted to the spread of citrus canker in Florida. We test risk-based control, which preferentially removes hosts expected to cause a high number of infections in the remaining host population. Removals then depend on past patterns of pathogen spread and host removal, which might be nontransparent to affected stakeholders. This motivates a variable radius strategy, which approximates risk-based control via removal radii that vary by location, but which are fixed in advance of any epidemic. Risk-based control outperforms variable radius control, which in turn outperforms constant radius removal. This result is robust to changes in disease spread parameters and initial patterns of susceptible host plants. However, efficiency degrades if epidemiological parameters are incorrectly characterised. Risk-based control including additional epidemiology can be used to improve disease management, but it requires good prior knowledge for optimal performance. This focuses attention on gaining maximal information from past epidemics, on understanding model transferability between locations and on adaptive management strategies that change over time.


Assuntos
Espécies Introduzidas , Doenças das Plantas/prevenção & controle , Medição de Risco , Modelos Biológicos , Doenças das Plantas/estatística & dados numéricos
8.
PLoS Comput Biol ; 11(4): e1004211, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25874622

RESUMO

Although local eradication is routinely attempted following introduction of disease into a new region, failure is commonplace. Epidemiological principles governing the design of successful control are not well-understood. We analyse factors underlying the effectiveness of reactive eradication of localised outbreaks of invading plant disease, using citrus canker in Florida as a case study, although our results are largely generic, and apply to other plant pathogens (as we show via our second case study, citrus greening). We demonstrate how to optimise control via removal of hosts surrounding detected infection (i.e. localised culling) using a spatially-explicit, stochastic epidemiological model. We show how to define optimal culling strategies that take account of stochasticity in disease spread, and how the effectiveness of disease control depends on epidemiological parameters determining pathogen infectivity, symptom emergence and spread, the initial level of infection, and the logistics and implementation of detection and control. We also consider how optimal culling strategies are conditioned on the levels of risk acceptance/aversion of decision makers, and show how to extend the analyses to account for potential larger-scale impacts of a small-scale outbreak. Control of local outbreaks by culling can be very effective, particularly when started quickly, but the optimum strategy and its performance are strongly dependent on epidemiological parameters (particularly those controlling dispersal and the extent of any cryptic infection, i.e. infectious hosts prior to symptoms), the logistics of detection and control, and the level of local and global risk that is deemed to be acceptable. A version of the model we developed to illustrate our methodology and results to an audience of stakeholders, including policy makers, regulators and growers, is available online as an interactive, user-friendly interface at http://www.webidemics.com/. This version of our model allows the complex epidemiological principles that underlie our results to be communicated to a non-specialist audience.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Modelos Estatísticos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Citrus/microbiologia , Florida , Xanthomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...